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ABSTRACT

The 11S + l1S elastic and llS + 21 S and 11S + 21 P excitation

cross sections of Helium atoms by collision with a charged particle are

obtained as analytic functions of incident velocity. The first order time

dependent scattering theory is used. Numerical values of e--He cross

sections are obtained for incident energies in the range (30 eV - 800 eV)

and compared with earlier Born approximation calculations and with avail-

able experimental data. It is found that at 100 eV and above, the present

results are in good agreement with the experimental results of Vriens et al

(1968) for elastic scattering, of Lassattre (1965) for 11S + 21 S and of

Vriens et al (1968) for llS - 21P excitations. They are also closer to the'

experimental results than the corresponding Born calculations.
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1. Introduction

In this paper we use the first order time dependent scattering

theory to evaluate optically allowed and forbidden transition cross sections

in atomic He by collision with a charged particle. This method was first

used in atomic collision problems by Seatonl (1963) who pointed out the

superiority of the cross sections thus obtained over that given by the usual

Born approximation. Subsequently other authors have used the method to

calculate cross sections for many optically allowed transitions2 and for

transitions mediated by the quadrupole force 3.

These early works are characterized by two further approximations

within the framework of a first order theory. First, the exact Coulomb

interaction is replaced by an outer expansion in terms of multipole moments

and second, a cut off parameter is introduced on plausible physical grounds

to prevent the cross sections from growing indefinitely at small impact

parameters. These:.two approximations are related in the sense that the

multipole potential, valid for relatively larger distances, necessarily

diverges when extended down to the origin. It is this divergence which the

cut off parameter is designed to prevent. The use of multipole expansion

also limits the kind of cross sections that can be calculated by this method.

For example, the optically forbidden 1S + 2S transitions in H or 1'S -+ 2'S

in He cannot be evaluated from such a potential (due to the vanishing of the

relevant matrix elements). Recently the semiclassical method has been ex-

tended to calculations of such and other cross sections by the more elaborate

and in principle more accurate method of solving the (time dependent) close

coupling equations4 . As is well known, unlike the first order theory, this

involves extensive numerical computations. We therefore, consider it worthwhile
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to investigate the use of the first order theory in predicting analytically

optically forbidden as well as allowed transitions in Hte. Reexamining the

first order theory in the line indicated above we find that if no approxima-

tion is made of the interaction potential, then the unsatisfactory diver-

gences (and the associated problem of choosing a (non-unique) cut off para-

meter) can be eliminated. At the same time, the cross sections for all

transitions, including the optically forbidden ones, can still be obtained

directly as analytic functions of the incident energy. In this work, to

illustrate the procedure we have evaluated the elastic 11S + 11S and the

inelastic 1 S + 2 S and 1 S + 21P cross sections in He (for electron impact)

and compared them with the available experimental results and with calcula-

tions under Born approximation.
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2. Theory

The transition probability in the first order time dependent pertur-

bation theory is given by

=P -i--S 1 f eiwt Vi+j(t)dt[2 (1)

where

2 2
.t r i (Z Zoe Z Z e

itj ) p = Jdr (rp) X - (t) i 
p

~i and ~J are initial and final wavefunctions, Si is the statistical weight

of the state i and the summation is over the degenerate initial and final

states of the target; fiw = Ei-E
f
, Z is the charge on the incident particle

and Z is the nuclear charge of the atom. The motion of the incident

particle is described by the classical trajectory r(t) which we assume to

be a straight line along the z-axis.

2 2 2
r2(t) b + (vt) (3)

where b is the impact parameter v is the velocity and t stands for time.

We have adopted the following analytic Hartree-Fock wave functions for

4,5the He atom

N S
,r 2) - 1S(rl)ciS (r 2) (4)

1S
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where

(5)01S(r) = exp (-ar) + B exp(-Br)

with

B = 0.7990

B= 2.61

21 S (r,r 2 ) -2 S

N2 S
T {exp (-2r1) 25S(r2 )

+ exp (-2r2) S2S(rl)}

S2S(r) = exp (-yr) + Dr exp (-6r)

N2S = 0.706382S

y = 1.1946

D = -0.26832

6 = 0.4733

which is orthogonal to the ground state wave function (4).

N1 = 1.6966

a = 1.41

where

(6)

r

with

(7)
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N+ 

21p (rl'r2) = -2 {exp (-2rl) 2P(r2
)

(8)

+ exp (-2r2) ,2p
m
(r)

where

02p
m

(r) = r exp (-Xr) Ylm (r) (9)

with

N2 = 0.37831 X = 0.485,
2 p

and Ylm (r) is a spherical harmonic

For the eigen energies we have adopted the experimental values5

Ell
s
= 2.90372 E is = 2.14597

E21
p

= 2.12384.

First, using the above wave functions the transition potentials (2) are

calculated. Substituting these (time dependent) potentials in (1) the

integratioh over time is performed analytically to obtain the expressions

for the transition probabilities which are given in the appendix. The re-

.6
spective cross sections are then obtained from the expression

V X

if VE) Pi (b) 2wbdb (10)
1 0

It is to be noted that the above definition of transtion cross sections

automatically satisfies the quantum - mechanical reciprocity relation,

provided the velocity of the projectile in its entire trajectory is taken to

be an average of the velocities before and after the collision, which we



7

set simply equal to the mean velocity

V. + V
v = - f (11)

This choice further fulfill's the requirement that the transition cross sections

(10) vanish at the thresholds.

We now carry out the integrations over the impact parameters in (10)

and obtain the a1
s

11 l s, +21s and all
s

1 cross sections in terms

of the well known Gauss - hypergeometric functions. The method of obtaining

the final results are described in the appendix and the full expressions are

obtainable from the authors on request. Inspite of their lengths the

expressions are basically simple.

3. Discussion:

In Tables 1, 2.and 3 we give representative values for the elastic

11s -+ 1 s cross sections and the inelastic 1-s + 2!s and 1 s +21p cross

sections in He by e- impact. To compare we also quote results of previous

Born calculations5 using the same wave functions and several experimental

measurements7 11 .
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Table 1. Cross sections for the

elastic scattering of electrons by He (in ra )
0

Experimenta

0.76

0.44

0.31

0.19

0.142

First Bornb

0.411

0.288

0.222

0.1'52

0.1154

0.0931

Simplified
Second Born
(complete)

0.893

0.514

0,.352

0.211

0.1489

0.1146

avriens et.al. (ref. 7)

bHolt et. al. (Ref. 5)

Energy
(ev)

Present,
Results

50

100

150

200

300

400

500

0.9598

0.4799

0.3199

0.2399

0.1600

0.1200

o.0960
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Table 2. Cross Sections for the

Excitation l's + 2's of He by electrons.

(in 10 - 3 a2)

Energy Present ExpExptx Firstc SimplifiedC

in ev Results Born Second Born
(complete)

30 44.22

50 36.24

80 25.30

100 20.88 21.0 21.8 22.8

150 14.46 15.0 15.1 15.4

200 11.04 11.2 7.7 11.49 11.63

300 7.49 7.6 6.0 7.79 7.84

400 5.66 5.7 4.8 5.89 5.92

500 4.55 4.74 4.75

700 3.27 3.41 3.42

aLassettre (Ref. 9)

bVriens et.al. (Ref. 8)

CHolt et.al. (Ref. 5)

. - --
.. .. .. . .~~~~~~~~~~~,
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Table 3. Cross Sections for the

Excitation l's -+ 2'p of He by

Electrons (in 10-
2 wa2)

Exptb

9.95

11.70

11.60

10.46

9.30

7.40

6.29

4.86

4.32

Firstc
Born

15.09

12.63

10.85

8.55

7.12

5.37

4.38

Simplifiedc
Second Born

15.91

12.64

10.67

8.34

6.94

5.25

4.29

aVriens Et.A1. (Ref. 8)

bDonaldson Et. Al. (Ref. 11)

CHolt Et.A1. (Ref. 5)

Energy
ev

Present
Results

50

80

100

150

200

300

400

600

800

Expta

14.0

11.9

10.4

8.2

6.9

5.2

4.3

16.97

16.09

14.96

12.52

10.75

8.45

7.02

5.32

4.33
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It would be seen from the tables that the results for all the three

cross sections are in good agreement with experimental measurements above

100 e.v. They are at the same time closer to the experimental results than

the quantal Born calculations. At energies below 100 e.v the disagreement

with experiment (in the available case of l's + 2'p transition) is marked.

This disagreement at lower energies is perhaps to be expected, for the

first-order perturbations theory is unlikely to be valid at such energies.

Both the influence of exchange processes and the polarisation of the target

atom, which are neglected in the present calculations, are likely to be

important at such energies and the use of the second order perturbation

theory alone is unlikely to be sufficient (Notice e.g. the difference

between the second Born results and the experimental values even at 100 e.v)

We expect, however,that at 100 ev. and above the present analytic.

results would be useful for rapid and reliable calculations of similar

cross sections given here. Finally we note that the above results apply

directly for collisions with charged particles other than electrons (e.g. e and H+ )

when the appropriate centre of mass velocities are used for the projectile.



APPENDIX

V 1 ftR)= I x1 s+2 s J 2's
,r ) [ 2R

1

,R-r1
1

1 ]

where R(.t) is the position vector of the incident e- referred to the Helium

nucleus.

Vl1 s+21s(R) = 32 Nls N
2
s [Il(a + 2, a + y) + D 12 (a + 2, a + 6.)

+ B2 {II1( + 2, B + y) + D 12 (B + y, B + 6)}

+ B {I1(a + 2, B + Y) + I1($ + 2, a + y)}

+ BD {I2(a + 2, S + 6) + 12 (8 + 2, a + 6)}]

I1(p,q) = 2

pq

[exp--pR) (1 + 2)
q pR

+ exp(-qR)
P

I2(pq) = 2

p22

[ 3 exp(-pR) (1 + 2)
2 pR

+ exp(-qR) (R + 4 + 6 )]
P q q2 R

Visills(R) = 16N [Il(2a, 2a) + B4 I1(28, 28)

+ 4B2 I1(a + ~, a+ B) + 4B I1(2a, a + 6)

+ 483 I1(28, a + 8) + 2B2 Ii(2a, 2j)]

V sll+21Pm(R) = N2p N2s 6 (7 )1/2c~p 2s Ylm(e, ¢ )

[I3 (a + 2, a + X) + I3(8 + 2, 8 + x)

+ B {I
3
(a + 2, 8.+ X) + I3(8 + 2, a + X)}]

where

(1 + 2)]
qR

1' s(rl lr2)
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where

I3 (pq) = 32 [ 8
q3 R2

- exp(-qR)
{ -8

33R2
+ 4 + R}]

q2 R q

'Pls-2s (b) = 32NlsN2 s [I4(a + 2; a + y) + DI5 (a
+ 2, a + 6)

+ B2 {I4(B + 2, a + y) + DI5 (a + y, a + 6)

+ B {I4(a + 2, 8 + y) + I4(8 + 2, a + y)

+ BD {I5 (a + 2, 6 + 6) + I5(6 + 2, 6 + 6)1}]

where b is the impact parameter defined in eq. 3 and

I4(pq) = | e iw t
I1(p,q) dt

ON

4 1
v p2 q2

[{E Kl(61b)
q 61

+ K1 ( 2 b) }b
P 62

+ 2 {Ko(81b) + Ko(62b)}]
pq= 0(p +v2

= Vq2 + w2 / v 22

I5 (p,q) = [ 1
Vpq2

3K1( 1lb)

q2¢i

+ l a3 Kl(1 }b

P2 3 2

+6 {Ko (6 1b)+ Ko (82b)}

+ Ko( 2 b) b2]

p362

o

with



with = 4 + q2 _ w2 /v2
3 q2 + w2 /v2

Pllsl8 s(b) = 16Ni2 [I4(2a,2a) + B4 I4(24,26)

+ 4B2 I4(a + 6, a + 6) + 4B I4(2a,a + 6)

+ 4B2 I4(26, a + 6) + 2B2 I4(2a,2B)]

Plls 2Ipm(b) N2pN2 s (%/I2 64 [I6 (a + 2, a + x)
3 m

+ 16 (g + 2, + ) + B{I6 (a + 2, + ) + I6m ( + 2, a + )]
m m m

where

60 (vv 42 2 3 2 [ 8 {K (o 
2
b) -Ko(4b)}

6o I v v 47 p3q2 q3

+ 41q + 3) K1(62b ) b

+ a K (B2b) b
2 ]

622 .

with 6
4
= w/v.

I6+, (p,q) = -2 e3 i 3 8 {B 2Kl(b) 64K1 (64b)}

K1( 2b)
+ 4 Ko (82b) b + b2 ]

Finally, when these expressions for the transition probabilities are used

in eq. (10) for the cross section, the integrals that arise are of the

forms (a) and (b) where



J b-X K(pb) K (qb) db
b0

-v+X-l v
-2-X p 1X)q r( 1-X+U+v )r 

= 2 r (1-X) 2

r (1-X+1-v)
2

r (1-X-2-v ) F (1-X+v+v 1-X-U+v
2 21 2 ' 2

1 - ; 1 - )

for Re X < 1- IRe PI - IRe vI

where 2F1 is the gauss hypergeometric function.

O[81 1 (lab)- 20o

.2
a3 1n B3

12

2
- 1 in Bi

-
32

B32 In 3 - 12 in 1
3 3 1 i

2 2
81'. 3

K1 (62b)] a3 K1 (83b)bdb

a32 in a 3 - 622 In .2

- 2
2 3

+ in (B2) +
1
2

if 83 i B1 or B2

if 83 = B2.

)

(a)

s.-

(1-X-p+v)
2

(b)
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